3.4.51 \(\int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [351]

3.4.51.1 Optimal result
3.4.51.2 Mathematica [A] (warning: unable to verify)
3.4.51.3 Rubi [A] (verified)
3.4.51.4 Maple [B] (verified)
3.4.51.5 Fricas [F]
3.4.51.6 Sympy [F]
3.4.51.7 Maxima [F]
3.4.51.8 Giac [F]
3.4.51.9 Mupad [F(-1)]

3.4.51.1 Optimal result

Integrand size = 31, antiderivative size = 256 \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 (a-b) \sqrt {a+b} (3 A b+a B) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac {2 (a-b) \sqrt {a+b} (3 A-B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b d}+\frac {2 B \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d} \]

output
-2/3*(a-b)*(3*A*b+B*a)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^( 
1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*( 
1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2/3*(a-b)*(3*A-B)*cot(d*x+c)*EllipticF((a 
+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-se 
c(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2/3*B*(a+b*sec( 
d*x+c))^(1/2)*tan(d*x+c)/d
 
3.4.51.2 Mathematica [A] (warning: unable to verify)

Time = 12.40 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.59 \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \left (-2 (a+b) (3 A b+a B) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 b (a+b) (3 A+B) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )-(3 A b+a B) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b d (b+a \cos (c+d x)) (B+A \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\cos (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \left (\frac {2 (3 A b+a B) \sin (c+d x)}{3 b}+\frac {2}{3} B \tan (c+d x)\right )}{d (B+A \cos (c+d x))} \]

input
Integrate[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]
 
output
(2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(A + B*S 
ec[c + d*x])*(-2*(a + b)*(3*A*b + a*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x] 
)]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSi 
n[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(3*A + B)*Sqrt[Cos[c + 
 d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + 
d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (3*A*b + a* 
B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])) 
/(3*b*d*(b + a*Cos[c + d*x])*(B + A*Cos[c + d*x])*Sqrt[Sec[(c + d*x)/2]^2] 
*Sec[c + d*x]^(3/2)) + (Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c 
 + d*x])*((2*(3*A*b + a*B)*Sin[c + d*x])/(3*b) + (2*B*Tan[c + d*x])/3))/(d 
*(B + A*Cos[c + d*x]))
 
3.4.51.3 Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3042, 4490, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4490

\(\displaystyle \frac {2}{3} \int \frac {\sec (c+d x) (3 a A+b B+(3 A b+a B) \sec (c+d x))}{2 \sqrt {a+b \sec (c+d x)}}dx+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {\sec (c+d x) (3 a A+b B+(3 A b+a B) \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}}dx+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 a A+b B+(3 A b+a B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {1}{3} \left ((a-b) (3 A-B) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+(a B+3 A b) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left ((a-b) (3 A-B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+(a B+3 A b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {1}{3} \left ((a B+3 A b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) \sqrt {a+b} (3 A-B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {1}{3} \left (\frac {2 (a-b) \sqrt {a+b} (3 A-B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} (a B+3 A b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {2 B \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

input
Int[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]
 
output
((-2*(a - b)*Sqrt[a + b]*(3*A*b + a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[ 
a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d* 
x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) + (2*(a - b 
)*Sqrt[a + b]*(3*A - B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d 
*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S 
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/3 + (2*B*Sqrt[a + b*Sec[c + 
 d*x]]*Tan[c + d*x])/(3*d)
 

3.4.51.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4490
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1)   Int[Csc[e + f*x]* 
(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1 
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a* 
B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 
3.4.51.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2193\) vs. \(2(230)=460\).

Time = 24.40 (sec) , antiderivative size = 2194, normalized size of antiderivative = 8.57

method result size
parts \(\text {Expression too large to display}\) \(2194\)
default \(\text {Expression too large to display}\) \(2203\)

input
int(sec(d*x+c)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVER 
BOSE)
 
output
-2*A/d*(EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos 
(d*x+c)^2+EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*c 
os(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a 
*cos(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2) 
*b*cos(d*x+c)^2+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^( 
1/2)*a*cos(d*x+c)+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)) 
^(1/2)*b*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2)) 
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1 
))^(1/2)*a*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2 
))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c) 
+1))^(1/2)*b*cos(d*x+c)+EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2 
))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c) 
+1))^(1/2)*a+EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x 
+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/...
 
3.4.51.5 Fricas [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm= 
"fricas")
 
output
integral((B*sec(d*x + c)^2 + A*sec(d*x + c))*sqrt(b*sec(d*x + c) + a), x)
 
3.4.51.6 Sympy [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sec(c + d*x), x)
 
3.4.51.7 Maxima [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm= 
"maxima")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)
 
3.4.51.8 Giac [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm= 
"giac")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)
 
3.4.51.9 Mupad [F(-1)]

Timed out. \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\cos \left (c+d\,x\right )} \,d x \]

input
int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x),x)
 
output
int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x), x)